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Diagnostic performance of wireless fractional flow 
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A b s t r a c t

Introduction: The aim of this study was to evaluate diagnostic performance 
of wireless fractional flow reserve (FFR) used in patients with coronary ar-
tery disease (CAD).
Material and methods: PubMed, Cochrane Library, Embase and Clinical tri-
al.gov databases were searched by computer search and manual retrieval. 
The search terms included fractional flow reserve, quantitative coronary an-
giography, computational fluid dynamics and coronary artery disease. The 
meta-analysis was conducted with Stata12.0. Clinical outcomes included 
accuracy, sensitivity, specificity, positive likelihood ratio (+LR), negative like-
lihood ratio (–LR), diagnostic odds ratio (DOR) and area under the receiver 
operating curve.
Results: Nine studies comprising 2052 vessels were included in the present 
meta-analysis. The sensitivity, specificity, +LR, –LR, DOC and accuracy were 
87% (95% CI: 83–94%), 88% (95% CI: 82–92%), 7.28 (95% CI: 4.78–11.08), 
0.14 (95% CI: 0.10–0.21), 50.69 (95% CI: 25.22–101.88) and 0.94 (95% CI: 
0.91–0.96) respectively. No significant publication bias was detected.
Conclusions: This meta-analysis suggests that the clinical performance such 
as accuracy, sensitivity and specificity of wireless FFR is good to detect ste-
notic lesions with pressure-wire measured FFR as a reference.

Key words: fractional flow reserve, quantitative coronary angiography, 
computational fluid dynamics, coronary artery disease.

Introduction

Coronary artery disease (CAD) is the world’s most common cause of 
death. Currently, coronary computed tomography angiography (CCTA) is 
the preferred imaging examination method to evaluate coronary artery 
disease (CAD) noninvasively, owing to its relatively high sensitivity and 
negative predictive value for obstructive coronary artery disease [1–3]. 
However, CCTA mainly assesses the anatomic severity of vessels and is 
limited in functional severity assessment of coronary stenosis [4]. Frac-
tional flow reserve (FFR) is the gold standard of dynamics of coronary 
artery lesions [5, 6] and has been widely used among patients who were 
suspected to have CAD [7–9]. However, in the process of FFR, the ratio 
of pressure between the two sides of the stenosis was obtained through 
advancing a pressure wire toward the stenosis during coronary angiog-
raphy, which is an invasive procedure and is associated with additional 
risks of adverse events and higher examination costs [10]. 
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A  wireless non-invasive FFR method derived 
from computational fluid dynamics (CFD) and 3D 
quantitative coronary angiography (3D-QCA) was 
invented to assess the hemodynamic effect of cor-
onary stenosis on the basis of their angiograph-
ic morphology [11–14]. The wireless FFR method 
presents high diagnostic value for coronary artery 
stenosis induced by myocardial ischemia without 
increasing radiation dosage and provides an ide-
al noninvasive method for evaluation of lesion 
dynamics. It was demonstrated that angiogra-
phy-derived FFR showed good accuracy compared 
with invasive FFR [15]. This meta-analysis was un-
dertaken to evaluate the diagnostic performance 
of wireless FFR with pressure wire FFR as a refer-
ence among patients with CAD.

Material and methods

Data sources and searches

Databases of PubMed, Cochrane Library, EM-
BASE, and Clinical Trials.gov were searched until 
October 2018 with the keywords “Fractional Flow 
Reserve”, “Computational Fluid Dynamic”, “angi-
ography” and “Coronary Computed Tomography”. 
References from trials and relevant reviews were 
manually searched for additional trials.

Study selection

The following inclusion criteria were applied: (1) 
Patients were suspected or confirmed with coro-
nary artery disease; (2) Patients were assessed 
by wireless FFR (FFR derived by coronary angiog-
raphy (FFRangio), FFR derived by coronary CT an-
giography (FFRCT), quantitative flow ratio (QFR)) 

and measured invasive FFR; (3) The true positive, 
false positive, true negative and false negative re-
sults were reported; (4) 0.80 of invasive FFR was 
used as the threshold for lesion significance. Re-
views, meta-analyses, observational studies, and 
small-sample trials (n < 50) were excluded. The 
meta-analysis follows the Standards for Reporting 
of Diagnostic Accuracy (STARD) [16].

Data extraction and quality assessment 

Two authors extracted relevant information 
from the literature independently. Baseline demo-
graphic characteristics such as sample size, age, 
percentage of male subjects, percentage of diabe-
tes mellitus, percentage of hypertension and study 
type were extracted from eligible studies. Relevant 
data of true positives, false positives, true nega-
tives and false negatives were also extracted. The 
Quality Assessment of Diagnostic Accuracy Stud-
ies (QUADAS-2) tool was used to assess the qual-
ity of included studies. Risk of bias was evaluated 
based on four aspects: patient selection, index 
test, reference standard, flow and timing. Applica-
bility was evaluated based on patient selection, 
index test and reference standard.

Date analysis

The primary outcome of sensitivity and specific-
ity of wireless FFR in diagnosing hemodynamically 
significant coronary stenosis was pooled. Second-
ary outcomes include +LR, -LR, DOR and area un-
der the receiver operating curve, along with the 
95% confidence interval (CI) to express the diag-
nostic performance. Heterogeneity was detected 

Figure 1. Flow chart showing the progress through the stages of the meta-analysis
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by bivariate boxplot and publication bias was vi-
sually inspected using a funnel plot. All analyses 
were performed by Stata 11.0 (StataCorp, College 
Station, TX, USA). 

Results 

Literature screening and characteristics of 
included studies

There were 594 articles in total found during 
the initial search. After removing duplicates and 
reviewing abstracts, finally 9 studies [14, 15, 17–
23] comprising 2052 vessels met all inclusion cri-
teria and were included in the analysis. The whole 
selection procedure was depicted in Figure 1.  
The baseline demographic characteristics of the 
included studies are detailed in Table I. Among 
the included 9 studies, the angiography-derived 
FFR calculation was performed using quantitative 
flow ratio (QFR) in 6 studies, FFR

angio was used in 
1 study, and FFR

CT was used in 2 studies, in which 
FFR was derived from the computed tomography 
angiography (Table I). As the included studies 
were diagnostic test accuracy studies, the Quality 
Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2) tool was used to assess the study quali-
ty. The quality assessment results are presented 
in Supplementary Figure S1 and Supplementary 
Figure S2. There was low risk of bias regarding 
the index test, reference standard and flow and 
timing. Nevertheless, there existed unclear risk of 
bias with respect to patient selection due to the 
absence of consecutive inclusion in 44% (4/9) of 
the studies. In addition, low risk was observed 
regarding the index test, reference standard and 
selection of patients. 

Clinical results

Specificity and sensitivity

The diagnostic result of wire FFR was used as 
a  reference in calculation of the specificity and 
sensitivity of wireless FFR. The pooled sensitivity 
of the wireless FFR in stenotic lesion detection was 
87% (95% CI: 83%-94%) and pooled specificity 
was 88% (95% CI: 82–92%), as shown in Figure 2. 

Positive and negative likelihood ratio

Positive likelihood refers to the ratio of the true 
positive rate to the false positive rate, with the 
gold standard as a reference. Negative likelihood 
ratio refers to the ratio of the false negative rate 
to the true negative rate, with the gold standard 
as a  reference. The diagnostic result by pressure 
wire FFR was the gold standard. Pooled positive 
likelihood (+LR) was 7.28 (95% CI: 4.78–11.08) 
and negative likelihood ratio (–LR) was 0.14  
(95% CI: 0.10–0.21) (Figure 3).
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Diagnostic odds ratio and summary 
receiver operator curves

Diagnostic odds ratio (DOR) refers to the ratio 
of +LR to –LR, indicating the accuracy of the diag-
nostic test. The higher DOR is, the more accurate 
is the diagnostic test. The receiver operating char-
acteristics (ROC) curve graphically presented the 
association between sensitivity and specificity. 
The closer the area under the ROC is to 1.0, the 
more accurate the diagnostic test will be. Summa-
ry receiver operator curve (SROC) refers to using 
one ROC curve to show the association between 
specificity and sensitivity obtained by a series of 
studies in a meta-analysis. The pooled DOR in our 
analysis was 50.69 (95% CI: 25.22–101.88), as 
shown in Figure 4. The SROC revealed an area un-
der the curve (AUC) of 0.94 (95% CI: 0.91–0.96), as 
shown in Figure 5.

Sensitivity and publication bias analysis

Sensitivity analysis was conducted with bi-
variate boxplot (Supplementary Figure S3). The 
sensitivity analysis result showed that the study 
DeFACTO 2015 is a  major source of heteroge-
neity. According to the result of publication bias 
analysis performed with Deeks’ funnel plot (p = 
0.39), there was no significant publication bias, as 
shown in Supplementary Figure S4. 

Discussion

In the last 20 years, FFR has gradually been rec-
ognized as standard functional assessment met-
rics, especially for critical lesions (diameter ste-
nosis 30–70%) [24]. The DEFER study and FAME 
study confirmed that percutaneous coronary in-
tervention guided by FFR can reduce medical costs 
and unnecessary re-revascularization [25, 26]. 
Usage of FFR for patients who have already been 
selected to perform PCI can reduce the number of 
stents needed to implant and improve the relative 
clinical effect [27–29]. However, its invasiveness 
and high cost limited its wide application. Seeking 
a non-invasive, economic, accurate alternative is 
necessary. 

This meta-analysis showed that the diagnostic 
performance of wireless FFR has high sensitivity 
and specificity with pressure wire FFR as a refer-
ence in stable coronary artery disease patients. 
The pooled diagnostic accuracy of wireless FFR 
was high, with an AUC of 0.94 (95% CI: 0.66–0.94), 
and the high sensitivity and specificity confirm its 
good diagnostic performance. The high +LR (7.28 
(95% CI: 4.78–11.08)), low –LR (0.14 (95% CI: 
0.10–0.21)) and high DOR (50.69 (95% CI: 25.22–
101.88)) provide strong evidence of the useful-
ness of wireless FFR in clinical practice. A  recent 
published meta-analysis including 1842 vessels 
showed a pooled sensitivity of 89%, specificity of 

Study Id

NXT Trial 2014

DeFACTO 2015

Emori 2018

FAVOR II China Study

Yazaki 2017

FAVOR II Europe/Japan Study

Trobs 2015

Tu 2016

Tu 2014

COMBINED

SENSITIVITY (95% CI)

0.84 (0.76–0.90)

0.80 (0.73–0.86)

0.97 (0.90–1.00)

0.95 (0.89–0.98)

0.89 (0.76–0.96)

0.88 (0.81–0.94)

0.79 (0.60–0.92)

0.74 (0.54–0.89)

0.78 (0.56–0.93)

0.87 (0.82–0.91)

Q = 36.51, df = 8.00, p = 0.00

I2 = 78.09 (64.14–92.04) 

 0.5 1.0

Sensitivity

Study Id

NXT Trial 2014

DeFACTO 2015

Emori 2018

FAVOR II China Study

Yazaki 2017

FAVOR II Europe/Japan Study

Trobs 2015

Tu 2016

Tu 2014

COMBINED

SENSITIVITY (95% CI)

0.86 (0.82–0.89)

0.63 (0.56–0.68)

0.87 (0.70–0.96)

0.92 (0.87–0.95)

0.89 (0.81–0.94)

0.88 (0.83–0.92)

0.94 (0.86–0.98)

0.91 (0.81–0.97)

0.93 (0.82–0.98)

0.88 (0.82–0.92)

Q = 144.48, df = 8.00, p = 0.00

I2 = 94.46 (92.07–96.86)

 0.6 1.0

Sensitivity

Figure 2. Individual studies and summary point estimates for sensitivity and specificity
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Figure 3. Individual studies and summary point estimates for +LR and –LR
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Figure 4. Individual studies and summary point estimates for DOR
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Figure 5. Summary receiver operator curves (SROC)
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90%, positive likelihood ratio of 9.3, negative like-
lihood ratio of 0.13, and summary area under ROC 
of 0.84 [30]. Our analysis result was consistent 
with this meta-analysis, suggesting that wireless 
FFR might be good to detect hemodynamically sig-
nificant lesions. 

Compared with pressure wire measured FFR, 
wireless FFR can reduce the risk of adverse events 
related to the invasive pressure wire application, 
such as vessel dissection and myocardial infarc-
tion [31, 32]. At the same time, wireless FFR can 
reduce the hospitalization costs by avoiding the 
use of pressure wire and the related adverse 
events. 

The advantages of our analysis include the fol-
lowing: this is one of very few meta-analyses eval-
uating the accuracy of wireless FFR with invasive 
FFR as a  reference; most updated clinical trials 
were included in our analysis; FFRCT, a  new type 
of wireless FFR in which FFR was derived from the 
computed tomography angiography (CTA) was in-
cluded; a threshold of 0.80 by pressure wire mea-
surement of FFR was made.

Nevertheless, there were some limitations of 
our meta-analysis. Firstly, most of the included 
studies used wireless FFR in simple lesions; thus 
there is a  lack of application in complex lesions 
such as CABG and calcified lesions. Secondly, dif-
ferent software of the wireless FFR used in differ-
ent clinical trials may lead to heterogeneity be-
tween studies. Thirdly, we could not obtain data 
of individual patients to address some unresolved 

problems to make further analysis, such as the 
clinical performance in the uncertainty zone. In 
future, more rigorous, large-sample,  high quality 
international trials are needed; several angiog-
raphy-based methods have been developed to 
derive FFR [12, 15, 33–34], so subgroup analysis 
based on various methods could be performed.

In conclusion, this meta-analysis indicates that 
the clinical performance such as accuracy, sensi-
tivity and specificity of wireless FFR is good to de-
tect stenotic lesions with pressure-wire measured 
FFR as a reference.
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